1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
| #define THREADS_PER_BLOCK 16 #define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0)) const float EPS = 1e-8;
struct Point { float x, y; __device__ Point() {} __device__ Point(double _x, double _y){ x = _x, y = _y; }
__device__ void set(float _x, float _y){ x = _x; y = _y; }
__device__ Point operator +(const Point &b)const{ return Point(x + b.x, y + b.y); }
__device__ Point operator -(const Point &b)const{ return Point(x - b.x, y - b.y); } };
__device__ inline void rotate_around_center(const Point ¢er, const float angle_cos, const float angle_sin, Point &p){ float new_x = (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x; float new_y = (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y; p.set(new_x, new_y); }
__device__ inline int point_cmp(const Point &a, const Point &b, const Point ¢er){ return atan2(a.y - center.y, a.x - center.x) > atan2(b.y - center.y, b.x - center.x); }
__device__ inline float cross(const Point &a, const Point &b){ return a.x * b.y - a.y * b.x; }
__device__ inline float cross(const Point &p1, const Point &p2, const Point &p0){ return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y); }
__device__ int check_rect_cross(const Point &p1, const Point &p2, const Point &q1, const Point &q2){ int ret = min(p1.x,p2.x) <= max(q1.x,q2.x) && min(q1.x,q2.x) <= max(p1.x,p2.x) && min(p1.y,p2.y) <= max(q1.y,q2.y) && min(q1.y,q2.y) <= max(p1.y,p2.y); return ret; }
__device__ inline int check_in_box2d(const float *box, const Point &p){ const float MARGIN = 1e-2;
float center_x = box[0], center_y = box[1]; float angle_cos = cos(-box[6]), angle_sin = sin(-box[6]); float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin); float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos;
return (fabs(rot_x) < box[3] / 2 + MARGIN && fabs(rot_y) < box[4] / 2 + MARGIN); }
__device__ inline int intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans){ if (check_rect_cross(p0, p1, q0, q1) == 0) return 0;
float s1 = cross(q0, p1, p0); float s2 = cross(p1, q1, p0); float s3 = cross(p0, q1, q0); float s4 = cross(q1, p1, q0);
if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
float s5 = cross(q1, p1, p0); if(fabs(s5 - s1) > EPS){ ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1); ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
} else{ float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y; float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y; float D = a0 * b1 - a1 * b0;
ans.x = (b0 * c1 - b1 * c0) / D; ans.y = (a1 * c0 - a0 * c1) / D; }
return 1; }
__device__ inline float box_overlap(const float *box_a, const float *box_b){
float a_angle = box_a[6], b_angle = box_b[6]; float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2, a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2; float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half; float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half; float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half; float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half;
Point center_a(box_a[0], box_a[1]); Point center_b(box_b[0], box_b[1]);
Point box_a_corners[5]; box_a_corners[0].set(a_x1, a_y1); box_a_corners[1].set(a_x2, a_y1); box_a_corners[2].set(a_x2, a_y2); box_a_corners[3].set(a_x1, a_y2);
Point box_b_corners[5]; box_b_corners[0].set(b_x1, b_y1); box_b_corners[1].set(b_x2, b_y1); box_b_corners[2].set(b_x2, b_y2); box_b_corners[3].set(b_x1, b_y2);
float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle); float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
for (int k = 0; k < 4; k++){ rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]); rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]); }
box_a_corners[4] = box_a_corners[0]; box_b_corners[4] = box_b_corners[0];
Point cross_points[16]; Point poly_center; int cnt = 0, flag = 0;
poly_center.set(0, 0); for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++){ flag = intersection(box_a_corners[i + 1], box_a_corners[i], box_b_corners[j + 1], box_b_corners[j], cross_points[cnt]); if (flag){ poly_center = poly_center + cross_points[cnt]; cnt++; } } }
for (int k = 0; k < 4; k++){ if (check_in_box2d(box_a, box_b_corners[k])){ poly_center = poly_center + box_b_corners[k]; cross_points[cnt] = box_b_corners[k]; cnt++; } if (check_in_box2d(box_b, box_a_corners[k])){ poly_center = poly_center + box_a_corners[k]; cross_points[cnt] = box_a_corners[k]; cnt++; } }
poly_center.x /= cnt; poly_center.y /= cnt;
Point temp; for (int j = 0; j < cnt - 1; j++){ for (int i = 0; i < cnt - j - 1; i++){ if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)){ temp = cross_points[i]; cross_points[i] = cross_points[i + 1]; cross_points[i + 1] = temp; } } }
float area = 0; for (int k = 0; k < cnt - 1; k++){ area += cross(cross_points[k] - cross_points[0], cross_points[k + 1] - cross_points[0]); }
return fabs(area) / 2.0; }
__device__ inline float iou_bev(const float *box_a, const float *box_b){ float sa = box_a[3] * box_a[4]; float sb = box_b[3] * box_b[4]; float s_overlap = box_overlap(box_a, box_b); return s_overlap / fmaxf(sa + sb - s_overlap, EPS); }
__global__ void nms_kernel(const int boxes_num, const float nms_overlap_thresh, const float *boxes, unsigned long long *mask){
const int row_start = blockIdx.y; const int col_start = blockIdx.x; const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS); const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
__shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 7];
if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 7 + 0] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 0]; block_boxes[threadIdx.x * 7 + 1] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 1]; block_boxes[threadIdx.x * 7 + 2] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 2]; block_boxes[threadIdx.x * 7 + 3] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 3]; block_boxes[threadIdx.x * 7 + 4] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 4]; block_boxes[threadIdx.x * 7 + 5] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 5]; block_boxes[threadIdx.x * 7 + 6] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 7 + 6]; } __syncthreads();
if (threadIdx.x < row_size) { const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x; const float *cur_box = boxes + cur_box_idx * 7;
int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (iou_bev(cur_box, block_boxes + i * 7) > nms_overlap_thresh){ t |= 1ULL << i; } } const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS); mask[cur_box_idx * col_blocks + col_start] = t; } }
void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh){ dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS), DIVUP(boxes_num, THREADS_PER_BLOCK_NMS)); dim3 threads(THREADS_PER_BLOCK_NMS); nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes, mask); }
|